Human tumor-derived exosomes selectively impair lymphocyte responses to interleukin-2.

نویسندگان

  • Aled Clayton
  • J Paul Mitchell
  • Jacquelyn Court
  • Malcolm D Mason
  • Zsuzsanna Tabi
چکیده

Exosomes are nanometer-sized vesicles, secreted by normal and neoplastic cells. The outcome following interaction between the cellular immune system and cancer-derived exosomes is not well understood. Interleukin-2 (IL-2) is a key factor supporting expansion and differentiation of CTL and natural killer (NK) cells but can also support regulatory T cells and their suppressive functions. Our study examined whether tumor-derived exosomes could modify lymphocyte IL-2 responses. Proliferation of healthy donor peripheral blood lymphocytes in response to IL-2 was inhibited by tumor exosomes. In unfractionated lymphocytes, this effect was seen in all cell subsets. Separating CD4(+) T cells, CD8(+) T cells, and NK cells revealed that CD8(+) T-cell proliferation was not inhibited in the absence of CD4(+) T cells and that NK cell proliferation was only slightly impaired. Other exosome effects included selective impairment of IL-2-mediated CD25 up-regulation, affecting all but the CD3(+)CD8(-) T-cell subset. IL-2-induced Foxp3 expression by CD4(+)CD25(+) cells was not inhibited by tumor exosomes, and the suppressive function of CD4(+)CD25(+) T cells was enhanced by exosomes. In contrast, exosomes directly inhibited NK cell killing function in a T-cell-independent manner. Analysis of tumor exosomes revealed membrane-associated transforming growth factor beta(1) (TGFbeta(1)), which contributed to the antiproliferative effects, shown by using neutralizing TGFbeta(1)-specific antibody. The data show an exosome-mediated mechanism of skewing IL-2 responsiveness in favor of regulatory T cells and away from cytotoxic cells. This coordinated "double hit" to cellular immunity strongly implicates the role of exosomes in tumor immune evasion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glycosyl-phosphatidylinositol-anchored interleukin-2 expressed on tumor-derived exosomes induces antitumor immune response in vitro.

AIMS AND BACKGROUND Tumor-derived exosomes (TEXs) have been considered as a new kind of cancer vaccine, but the antitumor effects are not satisfactory. In order to improve the efficacy of TEXs, we investigated whether exosomes derived from glycosyl-phosphatidylinositol-anchored interleukin 2 (GPI-IL-2) gene-modified bladder cancer cells can increase the antitumor effects. METHODS AND STUDY DE...

متن کامل

Tumor-Related Exosomes Contribute to Tumor-Promoting Microenvironment: An Immunological Perspective

Exosomes are a kind of cell-released membrane-form structures which contain proteins, lipids, and nucleic acids. These vesicular organelles play a key role in intercellular communication. Numerous experiments demonstrated that tumor-related exosomes (TEXs) can induce immune surveillance in the microenvironment in vivo and in vitro. They can interfere with the maturation of DC cells, impair NK c...

متن کامل

Interleukin-12-anchored exosomes increase cytotoxicity of T lymphocytes by reversing the JAK/STAT pathway impaired by tumor-derived exosomes.

Tumor-derived exosomes express tumor antigens, leading to their promising utility as tumor vaccines, but they also can suppress T-cell signaling molecules and reduce cytotoxic effects. We investigated whether interleukin-12 (IL-12)-anchored exosomes (EXO/IL-12) reverse tumor exosome-mediated inhibition of T-cell activation and cytotoxicity was associated with inhibition of JAK3 and p-STAT5. A c...

متن کامل

Dendritic cell-derived exosomes stimulate stronger CD8+ CTL responses and antitumor immunity than tumor cell-derived exosomes.

Exosomes (EXO) derived from dendritic cells (DC) and tumor cells have been used to stimulate antitumor immune responses in animal models and in clinical trials. However, there has been no side-by-side comparison of the stimulatory efficiency of the antitumor immune responses induced by these two commonly used EXO vaccines. In this study, we selected to study the phenotype characteristics of EXO...

متن کامل

Dendritic cell-derived exosomes elicit tumor regression in autochthonous hepatocellular carcinoma mouse models.

BACKGROUND & AIMS Dendritic cell (DC)-derived exosomes (DEXs) form a new class of vaccines for cancer immunotherapy. However, their potency in hepatocellular carcinoma (HCC), a life-threatening malignancy with limited treatment options in the clinic that responds poorly to immunotherapy, remains to be investigated. METHODS Exosomes derived from α-fetoprotein (AFP)-expressing DCs (DEXAFP) were...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 67 15  شماره 

صفحات  -

تاریخ انتشار 2007